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A large parameter mismatch can induce amplitude death in two instantaneously coupled oscillators.

Alternatively, a time delay in the coupling can induce amplitude death in two identical oscillators.

We unify the mechanism of quenching of oscillation in coupled oscillators, either by a large

parameter mismatch or a delay coupling, by a common lag scenario that is, surprisingly, different

from the conventional lag synchronization. We present numerical as well as experimental evidence

of this unknown kind of lag scenario when the lag increases with coupling and at a critically large

value at a critical coupling strength, amplitude death emerges in two largely mismatched oscillators.

This is analogous to amplitude death in identical systems with increasingly large coupling delay. In

support, we use examples of the Chua oscillator and the Bonhoeffer-van der Pol system.

Furthermore, we confirm this lag scenario during the onset of amplitude death in identical Stuart-

Landau system under various instantaneous coupling forms, repulsive, conjugate, and a type of non-

linear coupling. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4960086]

Oscillation quenching in the form of amplitude death

(AD) and oscillation death (OD) is known to appear in

oscillatory systems under different coupling schemes. It

was first noticed that a large parameter mismatch can

induce such a cessation of oscillation in instantaneously

coupled oscillators. Later, it was reported that a propaga-

tion delay between identical systems can also lead to oscil-

lation quenching. By this time, different coupling

schemes, conjugate type, environment coupling, repulsive

feedback link, were also found to show the effect of oscil-

lation quenching. We attempt here to unify the onset of

oscillation quenching in oscillators under different cou-

pling schemes by a common lag effect that is different

from the conventional lag scenario usually seen in mis-

matched oscillators or in delay system with a mismatch

in intrinsic delay. We provide numerical as well as exper-

imental evidence in several paradigmatic model systems.

I. INTRODUCTION

Quenching of oscillation1–3 is a well known emergent

behavior in coupled oscillators when they drive each other to

a stable equilibrium. This was evidenced first as an unex-

pected silencing of two side-by-side organ pipes4 and later

demonstrated in chemical oscillators.5 This strange phenome-

non was, at first, explained3,6 as an effect of large parameter

mismatch on coupled oscillatory systems. Later, it was also

observed in two identical oscillators when a critical propaga-

tion delay is introduced in the coupling.7,8 Different coupling

forms were later found to be able to induce the quenching

of oscillation, namely, dynamical coupling,9 conjugate cou-

pling,10 asymmetric coupling,11–13 dynamic environment

coupling,15 nonlinear coupling,16 quorum sensing coupling,17

and repulsive coupling link.18 Two distinct classes of the

quenching effects have been identified so far:1,2 amplitude

death (AD) and oscillation death (OD). In the case of AD, all

the coupled oscillators are stabilized to one equilibrium state

which may be the origin or any other fixed point. On the other

hand, in the case of OD, the coupled systems are stabilized to

multiple equilibrium states.

OD originates in coupled systems via diverse bifurcation

routes, pitchfork, transcritical, or saddle-node bifurcation2,18–21

depending upon the coupling form and the dynamical sys-

tem. AD usually emerges via reverse Hopf bifurcation (HB)

in different systems whatever may be the coupling form.1,2

Although AD and OD effects in coupled oscillators are

almost well understood, we report here a common lag effect,

so far unnoticed, that governs the emergence of AD via a

reverse HB in identical or mismatched oscillators under most

of the coupling schemes. This lag synchronization (LS)

effect first emerges, as usual, in two coupled mismatched

oscillators, above a critical coupling; however, the character-

istic feature of this lag scenario differs from the conventional

LS.14 We notice this lag scenario first in our experiment on

AD in two coupled Chua circuits with a large mismatch.

With increasing coupling strength, the coupled Chua circuits

undergo a reverse period-doubling from a chaotic state to a

period-1 regime. In this period-1 regime, LS is noticed when

an increase in the characteristic lag is recorded with the cou-

pling strength, instead of an expected decrease, until a death

of oscillation appears at a critically larger lag value. We ver-

ify the existence of this lag scenario, in another experiment
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with two coupled periodic Bonhoeffer-van der Pol (BVP)

oscillators. This lag scenario is analogous to the delay induced

AD7 in identical oscillators where an increasing conduction

delay induces a death above a critical value. We are motivated

by these experimental results to address a natural question if

the lag effect is a common governing rule of AD in identical

or mismatched oscillators irrespective of the coupling forms?

We confirm this unknown kind of lag scenario during the

onset of AD in identical oscillators under various other cou-

pling forms, namely, repulsive coupling, conjugate coupling,

and a type of nonlinear coupling. Basically, we attempt a uni-

fication of the phenomenon of quenching of oscillation in

coupled oscillators by a common lag effect.

We mention here that a generalized LS (GLS) was

reported earlier27 during the onset of AD in two instanta-

neously coupled delay systems with mismatches in intrinsic

delays. AD emerges there at a critically larger mismatch in

intrinsic delays at a fixed coupling strength. In contrast, we

report a type of GLS that emerges in coupled systems with

a priori presence of no delay of any form, and more specifi-

cally, we focus on an increasing lag effect with coupling that

leads to the emergence of AD.

II. LAG SCENARIO: EXPERIMENTAL OBSERVATION

We present our experimental observations for the cou-

pled Chua oscillators and the BVP systems in Figs. 1(a) and

1(b), respectively. We choose two reflection symmetric

systems, the 3D Chua oscillator and the 2D BVP oscillator,

to check generality of the results. We apply purely diffusive

mutual coupling via a resistance between two circuit nodes

of both the systems. We consider large parameter mismatch

in the oscillators and vary the coupling resistance to

observe AD for each coupled system. To our expectation, in

both the systems, a LS first emerges where the emergent lag

or delay s (not coupling delay) between the coupled oscilla-

tors increases from both left and right in regions I and II,

respectively. The intermediate AD regime emerges at criti-

cal values of lag at critical RC values. A difference lies in

the coherent relation of the coupled oscillators: for weaker

coupling in region I, an anti-LS23,24 is observed when the

pair of measured time series of the coupled oscillators

are out-of-phase (phase difference of 0 to p), while for

stronger coupling in region II, a LS is found as shown in the

oscilloscope pictures of time series in Figs. 2(a) and 2(b),

respectively. From a visual inspection of the experimental

time series of the coupled systems, the lag scenario is not

clear, particularly, in the anti-LS regime. However, taking a

closer look, we find that it belongs to a more general class

of LS, a type of GLS, where the amplitudes of the coupled

state variables are not identical although maintained a con-

stant lag. To avoid confusion, the amplitudes are normal-

ized by a scaling constant and compared using a modified

similarity measure14,25 when the coupled systems are found

strongly correlated and emerge with a finite characteristic

lag.

FIG. 1. Emergent lag (s) as a function of coupling resistance RC in experi-

ments. AD regimes exist intermediate to two vertical lines, (a) coupled Chua

oscillators and (b) coupled Bonhoeffer-van der Pol (BVP) systems. In both

systems, in region I at the right side of the AD regime, lag (dotted line)

increases with decrease in RC (increase of coupling strength) and AD

emerges for a critical lag s at a critical RC. On the left side, in region II, the

delay increases with RC when AD emerges at another critical value. Details

of the experiments are presented in supplementary material.22

FIG. 2. Oscilloscope pictures of experimental time series of coupled Chua

circuits. Measured voltages v2 and v4
23 plot for (a) RC ¼ 32 kX in anti-LS

regime, (b) RC ¼ 8 kX in LS regime, and (c) RC ¼ 20 kX in AD regime as

shown in regions I, II, and AD regime, respectively, in Fig. 1(a).
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We provide further details of our experiments for both

the systems. First, we consider non-identical Chua oscillators

with instantaneous diffusive coupling and choose the circuit

parameters so that the isolated oscillators are in period-1

regime but with a mismatch of Df ¼ 142 Hz. Details of the

experimental circuits and their parameters are given in Ref.

22. The coupling resistance RC is varied when the onset of

AD is observed with increasing coupling strength (1=RC). The

coupled system develops a quasiperiodic behavior for weak

coupling and then becomes period-1 with a little increase of

the coupling strength when we start our measurements and

data capturing. A similar pair of node voltages v2 and v4 (ana-

log of state variables, for details see Ref. 22) of the coupled

circuits is captured by the data memory of a digital oscillo-

scope for each RC and the lag between them is estimated by

using a modified version of the similarity measure14,25

S2 sð Þ ¼ h v2 tð Þ � av4 t� sð Þ½ �2i
hv2

2 tð Þiha2v2
4 tð Þi

� �1=2
; (1)

where a ¼ v2m=v4m is a scaling constant. The v2m and v4m,

the maxima of the respective node voltages, are estimated

from the measured time series of the coupled oscillators. We

modify the standard similarity measure25,26 by inserting the

scaling or normalizing constant a because the coupled varia-

bles show difference in amplitudes (Fig. 2) at a given cou-

pling strength. The measured voltage variable v2 and the

scaled voltage variable av4 are now strongly correlated, and

it is confirmed by a zero global minimum of the similarity

measure SðsÞ at a characteristic lag s. For a pair of measured

time series (v2, v4) for each RC, the global minimum of SðsÞ
is obtained with an estimate of its characteristic lag s. The

estimated characteristic lag s is plotted with RC in Fig. 1(a),

which shows increasing trends for both increasing and

decreasing coupling (1=RC) when AD appears for an inter-

mediate coupling range.

This lag effect during the onset of AD is independent of

the dynamical system which we confirm by using the second

example of the coupled BVP oscillators22 with a large mis-

match. We choose this inverse symmetric system, similar to

the Chua oscillator, especially, to observe both LS and anti-

LS regimes for two extreme values of coupling strength

between which the AD appears. In other systems, LS can only

be observed during the onset of AD especially if they are

identical. Experimental results for the BVP systems are pre-

sented in Fig. 1(b) which records an increasing trend of the

emergent lag at both ends of the AD regime. The lag between

the oscillators increases with the increase/decrease of the cou-

pling strength, and the AD regime sets in for two critical time

lags at the two ends. The same procedure, as used for the cou-

pled Chua systems, is followed again to estimate the charac-

teristic lag for different RC values. Experimental time series

of the anti-LS, the LS, and AD are shown in Fig. 3 which cor-

respond to the regions I, II, and the intermediate AD region in

Fig. 1(b), respectively. We verify the results in numerical sim-

ulations as well and present some details for the coupled Chua

oscillator in Sec. III and by the eigenvalue analysis as pre-

sented in the supplementary material.22

III. LAG SCENARIO: NUMERICAL STUDY IN COUPLED
CHUA CIRCUIT

We present our numerical results of the lag scenario dur-

ing the onset of AD in two instantaneously coupled Chua

oscillators. The normalized equations of the coupled circuit22

are

dx1;2

dt
¼ a1;2 y1;2 � x1;2 � h x1;2ð Þ

� �
;

dy1;2

dt
¼ x1;2 � y1;2 þ z1;2 þ �1;2 y2;1 � y1;2ð Þ;

dz1;2

dt
¼ �b1;2y1;2 � c1;2z1;2; (2)

where

FIG. 3. Oscilloscope pictures of experimental time series of coupled BVP

circuits. Measured v1 and v2
22 plot for RC ¼ 32 kX in the anti-LS regime (a),

RC ¼ 8 kX in the LS regime (b), and RC ¼ 20 kX in AD regime (c).
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hðx1;2Þ ¼ b1;2x1;2 þ 0:5ða1;2 � b1;2Þ½jx1;2 þ 1j � jx1;2 � 1j�;

where �1;2¼R1;2=RC is the coupling strength. Other parame-

ters are a1¼ 10:0; a2¼ 9:619; b1¼ 18:05; b2¼ 16:958;
a1¼�1:4402; b1¼�0:7771; a2¼�1:4402, b2¼�0:7771;
c1¼ 0:209, and c2¼ 0:1964 for resistance values R1¼R2

¼ 1900X in the circuit.22 For the selected parameters, the

Chua oscillators both, in isolation, show period-1 limit cycle

dynamics with a frequency mismatch of Df ¼ 142Hz. The

frequency mismatch is estimated from the frequency-

parameter plots of the uncoupled systems.22

We simulate Eq. (2) for the selected parameters to plot a

phase diagram in Fig. 4 and locate the AD regime in the

RC � Df space. It shows a typical Arnold tongue-like struc-

ture of the AD regime in the dark region (online red color)

which reconfirms the old result, in the literature,1,2 that a

minimally large Df is necessary for AD to emerge at a criti-

cal RC value. The AD region widens with Df having two

extrema. The boundary of the AD regime demarcates the

contour of the Hopf bifurcation from the oscillatory region.

The horizontal line indicates the selected (RC�Df ) regime

of the numerical example presented in Figs. 5 and 6. With

increasing coupling strength (1=RC), we hit the boundary of

the AD regime at right when an anti-LS is encountered. For

larger coupling strength, we reach another boundary at left

(smaller RC) where the oscillation restarts and a LS is now

observed. An eigenvalue analysis of the coupled system is

done22 to confirm the Hopf bifurcation during the onset of

AD at both extremes of RC.22

The maxima of numerical time series y1 in solid lines

(red lines) is plotted with RC in Fig. 5, which becomes zero

in the middle (AD regime between two vertical lines). The

emergent lag is estimated from the pair of time series (y1, y2)

using the similarity measure in Eq. (1) and plotted in black

dots on both sides of the AD regime. The incremental nature

of the lag with coupling strength (decreasing RC) in region I

is clear from a close view of the plot in the inset. At smaller

RC (larger coupling strength), oscillation restarts at the

boundary of region II where the lag increases with Rc

(decreasing coupling strength) until AD arrives at another

FIG. 4. Phase diagram in the (RC�Df ) space of coupled Chua oscillators.

The red region indicates the AD regime. The blue horizontal line corre-

sponds to numerical simulations in Fig. 5.

FIG. 5. Maxima of y1 (red line) as a function of RC in coupled Chua oscilla-

tors. Frequency mismatch¼ 142 Hz; R1 ¼ R2 ¼ 1900 X. Lag (s) in black

dots between y1 and y2. The inset shows a zoomed version of the lag plot

(blue line) at right where back dots are data points.

(a)

(b)

(c)

(d)

(e)

FIG. 6. Numerical results of coupled

Chua oscillators. Frequency mismatch

Df ¼ 142 Hz. Time series of y1 and y2

in (a) anti-LS for RC¼ 31.5 kX, (b) LS

for RC¼ 8.2 kX, and (c) AD regime for

RC¼ 20 kX. The similarity measure

SðsÞ shows global minima at critical s
values in (d) anti-LS regime, (e) LS

regime.
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critical lag value. The time series of the coupled oscillators

in the anti-LS, the LS, and the AD regime are shown in Figs.

6(a)–6(c) which correspond to regions I, II, and the AD

regime, respectively, in Fig. 5. To confirm the anti-LS and

the LS characteristics of the coupled dynamics, the similarity

measures of the time series in Figs. 6(a) and 6(b) are plotted

in Figs. 6(d) and 6(e), respectively, each showing a strong

correlation [SðsÞ shows a global minimum] for a characteris-

tic lag between the scaled variables (y1 and ay2) of the cou-

pled systems. In the anti-LS regime,23,24 the state variables

y1 and y2 of the coupled systems are in antiphase but shifted

by an additional lag. In this anti-LS regime, y1 is first

inverted, and then, the lag is estimated with ay2. Our numeri-

cal results thus confirm the lag scenario during the onset of

oscillation quenching similar to what is observed in the

experiments.

IV. LAG SCENARIO IN IDENTICAL SYSTEMS

Finally, we check the generality of the lag scenario dur-

ing the onset of AD in coupled identical oscillators. We con-

firm the effect for three different coupling forms, repulsive,

conjugate, and a nonlinear coupling, in two identical Stuart-

Landau (SL) oscillators without conduction delay. The para-

digmatic SL limit cycle model is, particularly, used here since

it is a generic testbed of many dynamical phenomena, includ-

ing the AD. We mention here that LS is only found in identi-

cal systems, no anti-LS is seen at the weaker coupling limit

when a phase drifting is only observed. A large parameter

mismatch can really induce anti-LS which we do not elaborate

since our main target here is to reveal a unique type of lag sce-

nario during the onset of AD and especially explore the effect,

if present, in identical systems with no coupling delay. The

critical values of AD for all three coupling configurations

were already analytically derived earlier.10,16,18 However, we

are unsuccessful so far to derive analytically the emergent

critical lag of AD and, to the best of our knowledge, no such

method exists for instantaneously coupled systems although

attempts were definitely made in the past.28,29

A. Lag scenario: Repulsive coupling

Quenching of oscillation was reported18 in coupled SL

systems in the presence of additional repulsive coupling. The

SL oscillator with repulsive coupling is

_x1 ¼ ½1� ðx2
1 þ y2

1Þ�x1 � x1y1 þ �ðx2 � x1Þ;
_y1 ¼ ½1� ðx2

1 þ y2
1Þ�y1 þ x1x1;

_x2 ¼ ½1� ðx2
2 þ y2

2Þ�x2 � x2y2 þ �ðx1 � x2Þ;
_y2 ¼ ½1� ðx2

2 þ y2
2Þ�y2 þ x2x2 � �ðy1 þ y2Þ;

(3)

where � is the coupling strength, and x1 ¼ x2 ¼ x ¼ 3. The

attractive diffusive coupling is applied via the x variable,

while the repulsive link is applied as a unidirectional nega-

tive feedback via the y variable. Figure 7 plots both the max-

ima and minima of the time series x2. The black line shows

the emergent delay (s) between the variables x1 and x2. As

usual, the emergent lag is estimated using the similarity mea-

sure (Eq. 1) and it increases with coupling strength to a criti-

cal value, � ¼ �c¼ 2 when AD sets in.

B. Lag scenario: Conjugate coupling

It is well known10 that coupling through conjugate vari-

ables induces AD in coupled identical oscillators; no cou-

pling delay is necessary. A possible lag scenario was present,

as mentioned in Refs. 10 and 26, that leads to the AD; how-

ever, it was not elaborated which we confirm here. We con-

sider two identical SL oscillators again with a conjugate

coupling

_x1 ¼ ½1� ðx2
1 þ y2

1Þ�x1 � x1y1 þ �ðy2 � x1Þ;
_y1 ¼ ½1� ðx2

1 þ y2
1Þ�y1 þ x1x1 þ �ðx2 � y1Þ;

_x2 ¼ ½1� ðx2
2 þ y2

2Þ�x2 � x2y2 þ �ðy1 � x2Þ;
_y2 ¼ ½1� ðx2

2 þ y2
2Þ�y2 þ x2x2 þ �ðx1 � y2Þ:

(4)

The frequency of the oscillators are taken as x1 ¼ x2 ¼ x
¼ 2. The maxima and minima of the time series y1 are given

in Fig. 8. The black line shows the emergent lag s between

the conjugate variables y1 and x2. The lag is calculated and

seen increasing with coupling strength until it reaches a criti-

cal value of �c¼ 1 when AD sets in.

C. Lag scenario: Nonlinear coupling

We find a type of nonlinear coupling16 that induces AD

in coupled oscillators. Two identical SL oscillators with a

nonlinear coupling are taken

FIG. 7. Numerical results: extrema of x2 as a function of � in coupled Stuart-

Landau oscillators with additional repulsive coupling for Dx ¼ 0

(x1 ¼ x2 ¼ 3). The black line is the emergent lag (s) between x1 and x2.

FIG. 8. Numerical results: extrema of y1 as a function of � in two Stuart-

Landau oscillators under conjugate coupling. Dx ¼ 0 (x1 ¼ x2 ¼ 2). Black

line plots the lag (s) between the variables y1 and x2.
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_x1 ¼ ½1�ðx2
1þ y2

1Þ�x1�x1y1þ �ðx1� aÞexpðx2�bÞÞ;
_y1 ¼ ½1�ðx2

1þ y2
1Þ�y1þx1x1;

_x2 ¼ ½1�ðx2
2þ y2

2Þ�x2�x2y2þ �ðx2� aÞexpðx1�bÞÞ;
_y2 ¼ ½1�ðx2

2þ y2
2Þ�y2þx2x2:

(5)

The frequency of the oscillators are taken as x1 ¼ x2 ¼
x ¼ 6 and a ¼ 1:0 and b ¼ 0:1. The maxima and minima of

the time series x1 are shown in the Fig. 9. The black line

shows the emergent lag (s) between the variables x1 and x2,

which increases with coupling strength until it increases to a

critical value �c¼ 5 when AD sets in.

V. DISCUSSION AND SUMMARY

In summary, we identified an unknown kind of lag sce-

nario during the onset of quenching of oscillation in instanta-

neously coupled identical or mismatched oscillators. This

lag scenario has been noticed in both experimental as well as

numerical simulations of instantaneously and diffusively

coupled mismatched oscillators, the Chua oscillator and the

BVP oscillator. In this lag scenario, the mismatched oscilla-

tors, as usual, emerge with lag synchronization at a critical

coupling strength; however, for a further increase in the cou-

pling strength, instead of usual decrease in the characteristic

lag between the coupled systems, it increases. Eventually,

the coupled system is stabilized via a reverse Hopf bifurca-

tion at a larger critical lag at a critical coupling. We specifi-

cally chose two reflection symmetric systems where a LS in

the larger coupling limit and an anti-LS in the weaker cou-

pling limit occurs with an intermediate AD regime. For both

the systems, the quenching of oscillation sets in for two dif-

ferent emergent lags at two different critical coupling

strengths. In particular, in the weaker coupling regime, we

presented a counterintuitive example of anti-LS where the

emergent lag time increases with coupling strength until AD

emerges at a critically larger lag. This lag scenario is analo-

gous to AD in identical oscillators where an increasing cou-

pling delay stabilizes the system at a critical value. A GLS

scenario was reported earlier27 during the onset of AD in

delay systems with a mismatch in intrinsic delays; however,

the characteristic feature of increasing lag effect during the

GLS was not shown there. Especially, we identified this

unknown kind of lag scenario during the onset of AD in

identical systems using the paradigmatic SL system under

different coupling forms, namely, repulsive feedback, conju-

gate coupling, and a type of nonlinear coupling. We con-

cluded that a common lag effect (emergent lag or extrinsic

coupling delay) governs the onset of quenching of oscillation

in coupled oscillators.
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